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ABSTRACT 
In a large spatial database the work mainly deals with the approximate string search. Particularly we examine 

the query range append with the string similarity search in both Euclidean space and Road network. We dub this 

query the spatial approximate string (SAS) query. We propose an approximate solution in Euclidean space, the 

D-tree which embeds min-wise signatures into an R-tree. The min-wise signature for an index node u keeps a 

clear representation of the union of q-grams from the sub tree of u. We find the pruning functionality of such 

signatures based on the set resemblance between the query string and the q-grams from the sub tree of index 

nodes. We discuss about the estimation of selectivity of a SAS query in Euclidean space, for which we present a 

novel adaptive algorithm to find the balanced partitions using both the spatial and string information stored in 

the tree. In Road networks, we propose a novel exact method, RSASSOL, which significantly performs the 

baseline algorithm. The RSASSOL method partitions the road network, adaptively searches relevant sub graphs, 

and prunes candidate points using both the string matching index and the spatial reference nodes. The efficiency 

and effectiveness of our approaches is by the extensive experiments on large real data sets. 

Keywords- Approximate string search, range query, road network and spatial databases 

 

I. INTRODUCTION 
Data mining also known as Knowledge 

Discovery or Knowledge Discovery in Database 

(KDD), is the process of extracting or mining the 

data from large amount of databases. Text mining is 

one of the applications of data mining which mainly 

involves the process of extracting interesting 

information and knowledge from unstructured text 

documents. Keyword search over a large amount of 

data is an important operation in a wide range of 

domains. In spatial databases, wherekeyword search 

becomes a fundamental building block for an 

increasing number of real-world applications, and 

proposed the IR
2
-Tree. A main limitationof the IR

2
-

Tree is that it onlysupports exact keyword search. 

Approximate string search is necessarywhen users 

have a fuzzysearchcondition, or a spelling error when 

submitting the query, or the strings in the database 

contain some degree of uncertainty or error. In the 

context of spatial search could be combined with any 

type of spatial queries. In this work, we focus on 

range queries and dub such queries as Spatial 

Approximate String (SAS) queries. We denote SAS 

queries in Euclidean space as (ESAS) queries. 

Similarly, it extends SAS queries to road networks 

(referred as RSAS queries).In ESAS, this motivates 

the need for string matching. A critical component of 

record matching involves determining whether two 

strings are similar or not: Two strings are considered 

matches if their corresponding (string) attributes are 

similar. String similarity is typically measured via a 

similarity function that, given a pair of strings returns 

a number between 0 and 1 a higher value indicating a 

greater degree of similarity with the value 1 

corresponding to equality. This function is used to 

perform a similarity join between two input relations 

that returns pairs of strings whose similarity is above 

an input threshold. 

 

II. RELATED WORK 
1. INCORPORATING FORMAL STRING   

INDEX TRANSFORMATION IN RECORD 

MATCHING 

In this paper, the author considered the 

problem of record matching for user-defined string 

transformation as input. The similarity between two 

strings is defined by transformations coupled with an 

underlying function of similarity. To lookup an input 

record against a table of records, where we make this 

approach with effectiveness by a fuzzy match 

operation. Here we have an additional table of 

transformation as input. The cognizant of 

transformations is nothing but the improvement in the 

quality of record matching and the efficient retrieval 

based on our index structure. The characteristic of 

this scenario is the most input sub-strings do not 

match with any member of the dictionary, sowe 

developed a compact filter which efficiently filters 

out a large number of sub-strings that cannot match 

with any member of dictionary.  For membership, the 
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sub-strings which pass out filter are then verified by 

checking it. We demonstrate real datasets that 

approach significantly outperforms both current best 

exact methods as well as probabilistic methods, that 

may not identify a small percentage of matching sub-

strings. 

 

2. RETRIEVING TOP-K PRESTIGE-BASED 

RELEVANT SPATIAL WEB OBJECTS 

In this paper, the author handles the problem of 

retrieving web documents which is relevant to query 

of a keyword within a pre-specified spatial region. 

There are two stages in query processing. In the First 

stage, indexing is for the filtration of web document. 

In the second stage, employed the another index. 

(e.g.., R-tree). To integrate the R-tree with signature 

files here a hybrid index structure is proposed. For 

the purpose of pruning the search space at a query 

time, both spatial information and text information is 

utilized by enables the hybrid index structure. 

However, this proposal is limited by its use of 

signature files (e.g.., the number of false matches is 

linear in the collection size and there is no sensible 

way of using signature files for handling ranking 

queries). To process a new type of query the 

combination of R
*
-tree and bitmap indexing is 

developed by hybrid index structure is called l-closest 

keyword query. To enable the efficient processing of 

the location-aware top-k ranking query, it utilizes 

both location and text information to prune the search 

space which integrates the R-tree and  inverted files 

for the IR-tree in hybrid index structure. 

 

3. SELECTIVITY ESTIMATION IN 

SPATIAL DATABASES 

In this paper, the author proposed a several 

new techniques for spatial selectivity estimation. 

These techniques are based on the spatial indices, 

binary space partitioning, and the novel notion of 

spatial skew. In database the critical component of 

query processing is selectivity estimation. For the 

spatial selectivity estimation there will be a very little 

work in providing accurate and efficient techniques, 

despite the increasing popularity of spatial databases. 

In this domain the relational techniques do not 

perform well because the spatial data defers from the 

relational data. From the previously known 

techniques,the author can able to show that :  (a) 

Sampling and parametric techniques which work well 

in the relational one-dimensional world do not work 

well for spatial data.  (b) A BSP based partitioning 

that we call Min-skew outperforms the other 

techniques over a broad range of query workloads 

and datasets.  

 

III. EXISTING SYSTEM 
Approximate string search is necessary 

when the users have a fuzzy condition search or 

spelling error when submitting the query. By 

completely ignoring the spatial component of a 

query, we evaluate only the string predicate by 

matching the index which is built as a string in both 

ESAS and RSAS query to produce a direct solution. 

The string solution which contains a point is not 

satisfied by the spatial predicate has been pruned in 

post processing step after all similar strings has been 

retrieved. 

1) The string solution suffers the same scalability 

and performance issues as the spatial solution. 

2) In existing spatial databases additionally we 

answer for SAS query to enable the efficient 

processing of standard spatial queries which is a 

spatial-oriented solution. 

 

IV. PROPOSED SYSTEM 
In our proposed system, we divide a roads 

network G={V,E} into t edge-disjoint sub graphs 

G1,G2,……,Gt, where t is a user parameter, and for 

each sub graph build one string index. From V as 

reference nodes, we also select a small subset VR of 

nodes: they are used to prune candidate points/nodes 

whose distance to query point q are out of query 

range r. In our RSAS query framework it consists of 

five steps.  

1) We find all the sub graphs which intersect with 

the query range. 

2) To retrieve the points we use the filtration tree 

of the sub graphs whose string are potentially 

similar to the query string. 

3) We performing the calculation of lower and 

upper bounds of their distance to the query 

point, using VR to prune away some of the 

candidate points. 

4) Between the query string and the strings of 

candidates the exact edit distance is performing 

to prune away some further candidate points. 

After this step, the string predicate has been 

fully explored. 

5) We do the checking process of their exact edit 

distance to the query point for the remaining 

candidate points to return those with distance 

within r.
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Figure 1.SYSTEM ARCHITECTURE 

 

In RSASSOL algorithm, we find all the sub 

graphs that intersect with the query range. Here we 

employee the Dijkstra‟s algorithm, that is starting 

from the query point q to traverse nodes in G. we 

analyze that sub graphs for further explorations, 

whenever this traversal needs the first node of new 

sub graph. When we reach the boundary of query 

range automatically the algorithm terminates.To find 

the points from Gi that may share similar strings to 

the query strings, examine theeach sub graph Gi, we 

use the approximate string search over Gi‟s filter tree 

as the next pruning step. Then using the spatial 

predicate, we prune the candidate points by 

computing lower and upper bounds on their distance 

to q using VR, in a similar way to the ALT algorithm. 

Given a candidate point p on an age w=(mi,mj), the 

shortest path from p to a reference node mr must pass 

through either mi or mj.  

 

Network distance  

 

d(p,mr)=min(d(p,mi)+d(mi,mr),d(p,mj)+d(mj,.mr)) 

 where   

d(mi,mr),d(mj,mr) are available from RDISTi and 

RDISTj respectively, 

d(p,mi) is the distance offset of p to mi which is 

available in the adjacency list and the points file of 

mi, 

 

d(p,mj)=NDIST(mi,mj)-d(p,mi) 

where 

NDIST(mi,mj) is available in the adjacency list of mi. 

We compute d(p,mr) on the fly rather than 

explicitly storing the distance between a point and a 

reference node since the number of points much 

larger than the number nodes in G. given d(p,mr) and 

d(q,mr) for every mrЄVR,  we then obtain the distance 

lower and upper bounds between p and q using the 

triangle inequality. Besides the batch verification, we 

support one-at-a-time-verification, which implement 

as follows. Verification model consists of two 

phases: first, the building phase, second, querying 

phase. In building phase, we create λ( r ) tuples { id, 

r, hash_sig, wt} for each dictionary string r and each 

signature generated by r. Hash code of signature is 

denoted as hash_sig and wt is the weight of the string 

r. 
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Figure  2. OVERVIEW OF THE FRAMEWORK

RSASSOL ALGORITHM 

1. Find the set X of ids from all the sub graphs 

2. Set  B = ß ,Bc= ß 

3.  For each sub graph id  j  є  X do 

4.  Find all points ids in Ki whose associated strings 

α ‟ may satisfy є(α „ ,α) ≤ r using  filter tree 

5. for every point  Pi  є  Bc  do 

6. Calculate  b
+ 

(pi , q) and b 
– 
(pi ,q) as discussed 

7 .if  b
+ 

(pi ,q) ≤ r then 

8. if  є (α i ,α) ≤ r then move pi   from  Bc to B 

 

9. else delete pi   from Bc else  

if     b 
-  

(pi ,q) > r then 

delete pi  from   Bc 

10. for every point  pi є Bc  do 

11. if  є(α i ,α) > r then  

12. delete pi  from  Bc 

13.  Use the MPALT algorithm to find all points  p „s 

in Bc 

14.  Return B 

 

 

 

 

 

 

   

 

 

 

 

Figure 3.SS-JOIN IMPLEMENTATION 

 

In this section, we perform the String 

Similarity joins using edit distance, which is one of 

the most common distance functions for string. SS-

Joins are closely related to set-containment joins, 

which has been the main part of several previous 

works. Generally, similarity joins are closely related 

to proximity search. The goal is to retrieve thelookup 

closest object. 

 

APPROXIMATE MEMBERSHIP CHECKING 

Input: Z,ϒ, S =<t1 ,t2......> 

1. Build the filter f (Z,ϒ) 

2. Index Z for verification 

3. for (Start= 1 to lZ l – L + 1) 

4. for (length =1 to L) 

5. m ← < t start,tstart+1,tstart +length-1> 

6. if(f. prune(m)==true) continue 

7. if(Э r ε Z, S. t Similarity(r, m)≥ delta) 

8. Output m 

 

V. EXPERIMENTAL SETUP 
The system is developed using Java and is used 

in the system development. MYSQL is used as a 

back end for this system development. Input to this 

project is the user‟s string which is related to the 

keyword which already in database. 

1) The process of entering the string to collect the 

exact information about the string. 

2) The particular string makes a compare with 

related strings which is already stored in the 

database by using the ids. 

3) Then the id shortlisted the string which is 

related to the user string. 

Building phase 

 

 

Input                                                   Indexed                                                  Exact 

String                                                    StringString 

 

Querying phase 

In memory filter On disk indexed table 

Filtering component Verification component 

 

String(id,str) Compare(id1,id2) 

 

 

Signature(id,sign)                                  Output(id1,id2) 
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4) At last by applying the Dijkstra‟s algorithm the 

user can get the exact information for the 

particular string. 

The attention is finally paid to extract the 

exact information from the database based on the 

comparison between the strings. 

 

VI. CONCLUSION 
In this paper, we use the edit distance for the 

string predicate as the similarity measurement. And 

also address the problem of query selectivity 

estimation for the queries in Euclidean space. In the 

selectivityestimation for the query range on road 

networks where proposed. Even though, they can 

only able to estimate the number of loads and edges 

in the range. Future work includes examines the 

queries of spatial approximate sub-string, designing 

methods that are more user friendly and solving the 

selective estimation problem for RSAS queries. 
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